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COUPLED SYSTEMS SUBJECTED TO DETERMINATE
AND RANDOM INPUT

E. HEER

Mechanics Section, General Electric Company, King of Prussia, Pennsylvania

Abstract-A method is presented for the analysis of complex structural systems which can be subdivided into any
number of component systems arbitrarily interconnected at discrete points. Using experimentally or analytically
determined receptances (frequency response functions) characterizing the mechanical properties of the component
systems, receptances are derived which characterize the mechanical properties of the entire coupled system. The
requirement of system continuity at the coupling points gives rise to conditions of equilibrium and compatibility
at the connections. These conditions are modified allowing for the presence of elastic and/or dissipative coupling
units with negligible masses between the coupling points, thus, addin~. considerable practical flexibility to the
method. Keeping the contributions of the individual component systems identified, it is then shown how the
receptances enter response calculations for the entire system which is subjected to determinate or random
excitations.

NOTATION

Jf{

H(w)
jk

h]f(t-T)

JK

R *(T)
jk

JK

Rp(T)
jk

as superscripts indicate component system
as subscripts indicate points
mth constrained force
mth coupling unit
constrained displacement in system J at point j
constrained force in system J at point j
steady state excitation in system J at point j
excitation time function
steady state response in system J at point j
response time function
receptance between coupling points in system J
receptance between a coupling point and an excitation point in system J
receptance between a coupling point and a response point in system J
receptance between two field points in system J
receptance matrix
rectangular matrix
transpose of rectangular matrix
column matrix

receptance giving the response at point j in component system J due to a steady state excitation
with frequency w at point k in component system K
unit impulse function giving the response at pointj in component system J due to a unit impulse
excitation at time (t - T) at point k in component system K

response cross-correlation function

excitation cross-correlation function
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JK

S '(w) response cross-power spectral density
J'
JK

S p(w) excitation cross-power spectral density
j'

OJ angular frequency
t time
r time delay

INTRODUCTION

WHILE methods of analysis, applicable to simple structural elements, have been known
and successfully applied for well over a century, during recent years, analysts have directed
their attention to the analysis and evaluation of the general dynamical and vibrational
behavior of complex structural systems such as high rise buildings, missiles, aeroplanes,
space stations, etc. These systems are frequently too involved to be amenable to proper
idealizations and thus to purely analytical treatment. It becomes therefore necessary to
resort to experimental vibration techniques which may be carried out on scaled model
structures or on the actual full-size structure. Because of difficulties in proper scaling and
simulation, vibration tests on models frequently offer less chance of successful predictions
than analytical idealizations. The most reliable results are to be expected, therefore, from
properly conducted full-size tests. This is not only expensive, but frequently infeasible since
the size of the structural system may be such that it cannot be tested in one piece, or dif­
ferent parts of the whole system are fabricated and assembled at different geographical
locations.

This then requires a method by which knowledge of certain measured vibrational
characteristics ofthe component parts of the system allows the prediction of the vibrational
characteristics of the whole system.

In more recent years, several methods have been devised by which the behavior of a
structural system may be predicted in terms ofthe properties ofits components. The method
presented in this paper falls into this category, and in order to clarify the position of this
study relative to other studies in this area, reference is made to some typical ones that have
appeared in the recent literature.

A method of analysis of considerable accuracy and versatility has grown out of the
well-known methods of Holzer [IJ and Myklestad [2]. It has been generalized by Pestel
and associates [3-5] and is known as the method of "transfer matrices". A method based
on component mode analysis has been presented by Hurty [6]. Another powerful method
of analysis employs the concept of "receptance", also called frequency response function,
mechanical admittance, or dynamic influence coefficient. Duncan [7] has given an account
of its application to simple conservative systems under the action of isolated harmonic
forces and has extended it to simple systems with damping and aerodynamic actions.
Based on this work, Bishop and Johnson (8] extensively applied the concept of receptance
to various simple structures.

In most of these works, damping is neglected altogether, or it is dealt with in an idealized
manner with the assumption that it is small enough so that every mode of vibration may be
considered a single oscillator. A notable exception to this, presented by Hurty [6J, allows
for damping at discrete points that is neither small nor of such a nature as to prevent
coupling of the undamped natural modes. An extensive discussion of systems with a finite
number of degrees of freedom subject to linear damping, together with an assessment of
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various resonance testing techniques, has been given by Bishop and Gladwell [9]. All of
these investigations are based on the determination of eigen frequencies and modal shapes
which usually poses the major problem.

In this paper, the concept of mode is, therefore, discarded in favor of the concept of
receptance. In this context, a method is devised by which the receptance measurements on
the component systems may be translated automatically by digital means into receptances
of the entire system. It is then shown how this is adaptable to response calculations for the
entire system which is subjected to determinate or random inputs. Allowance is made for
any number of component systems which are interconnected to each other at any arbitrary
number ofpoints. In addition, elastic and/or dissipative coupling units at the coupling points
are considered, thus simplifying the experimental measurements and allowing to vary the
coupling conditions without repeating the determination of receptances of the component
systems. No assumptions are made with regard to the magnitude of damping in the
component system and in the coupling units.

SYSTEM REPRESENTATION

When more than two component systems are coupled, it is usually expedient to set up
the governing equations with the help of a block diagram, Fig. 1.

(i) Component systems are represented by rectangles A, B, C, ... N.
(ii) Coupling points in each system are numbered consecutively 1,2, ... a, in A;

1,2, ... b, in B; ... ,1,2, ... n, in N. Two or more independent couplings at the same
physical point are counted as two or more coupling points, a situation occurring, e.g. at
points where forces as well as moments are transmitted.
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FIG. I. Representation of coupled system.
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(iii) Constrained forces Mt, M:, in A; Mf, M:, in B; , M·{, M:, in N; and
constrained dIsplacements Dt, D:, in A; Df, D:, in B; , Df, D:, in N; are
represented as positive when pointing into the component systems.

(iv) The appropriate coupling points are connected in accordance with the actual
physical system. The connecting lines indicate the positive direction of the constrained
forces M bM 2", iJm ,··. and represent the corresponding coupling units K b K 2 ,··· Km ,.· ..

(v) External excitations, positive when pointing into the system, are designated
'It A .{. B B' N N'Nh h bconsecutlvey "yPl''''Pcp,mA;P\''''Pbp,mB;""PI''''Pnp,m ,w eret esu-

scripts indicate the point of application.
In Fig. 1, all impressed excitations are, with respect to a common origin, the real parts

of the steady state amplitudes of these quantities which vary sinusoidally with a particular
frequency OJ. Thus, if the amplitude of the excitation in a typical system J, at a typical point
j, is given by P1(w), the corresponding component in Fig. 1 may be written in the usual
complex form

P}(w) = P}(w) exp(C1>}(w)). (1)

Similar remarks apply to the response X}(w). Hence, all quantities introduced in Fig.
are in general steady state complex numbers at frequency w.

THE SYSTEM MATRIX

In the typical component system J with the given external steady state excitations
Pi, P~, ... p}p and the as yet unknown steady state constrained forces at the coupling
points, M~, M~, .. . M}, the steady state response at every point of the component system J
is obtained using the predetermined receptances at frequency w. At a typical coupling point
m, the steady state constrained displacement is

J jp

D~ = L: 8mkMi + L: BmkPi
k= I k= I

(2)

p J
1() 12' 8ljp

{}22

where emk are receptances between coupling points, and 8mk are receptances involving only
one coupling point. The typical receptance 8jk is defined as the ratio between the steady
state displacement-like response at any point j and the force-like excitation with constant
frequency w at any point k. Because of the ever present damping, there exists a phase lag
between the amplitudes of excitation and response. The receptances, therefore, appear in
general as complex numbers, where both the real and imaginary part, or equivalently the
modulus and phase angle are given as functions of frequency w.

The constrained displacement vector at frequency w of the coupling points in system J
follows from equation (2) as

D~ ell 812 ", elj

D~ e2l 822

+ (3)

DJ {Jmm MJ {}mmm m

DJ (J ., rJ, MJ 8j , l)Ii' .. 8Iip

. I
.f J. I) J

p]p)
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or, changing to symbolic matrix notation,

{DJ} = [~J]{MJ}+[PlJ]{pJ}. (4)

l
PlB~B

Similar steady state equations can be written for every component system and may be
combined in the following array.

{DA} ~A

{DB}

~J
+

(5)

or, with obvious change of notation,

{D} = [~]{M}+[Pl]{P}. (6)

To reduce the uncoupled equations (5) or (6) to a coupled solvable system, supple­
mentary coupling conditions, expressing compatibility and equilibrium at the coupling
points, must be prescribed. Because of practical design considerations, which in most
cases require deformable rather than rigid connections at the coupling points, it is expe­
dient to introduce coupling units between the test points of two systems at which their
receptances are measured, Fig. 2. These coupling units are considered in the coupling
conditions in which they simulate mathematically, as complex functions of frequency w,
the deformational behavior of such items as springs, bolts, washers, cushionings, etc.

In the coupled system, the test points perform motions relative to each other in
accordance with the constrained forces Mm which are transmitted through the coupling
unit. Because of assumed linearity, the relative displacement of the test points is propor­
tional to Mm , and since the coupling unit is in general elastic as well as dissipative, the
proportionality constant Km(w) is in general complex and frequency dependent. Hence,
the relative displacements between the test points are

(7)

If the test points are connected directly to each other, then dm = 0, i.e. Km = O.
With the help of Fig. 1 and equation (7), the conditions of compatibility can be written

[C]{D} = i"K--.]{M}. (8)

If the column vector {D} in equation (8) includes 2k elements, then the coupling matrix [C]
is a k x 2k matrix which has only two non-zero elements in each row, (-1) and (+ 1).

Test Point

Mm Coupling
Unit K

m

Test Point

FIG. 2. Typical coupling u"it.
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f' K ~ is a k x k diagonal constrained matrix which includes the coupling units K m , while
the column matrix {M} includes the corresponding constrained forces.

Again, following Fig. 1, it is easily verified that the equilibrium conditions can be
written as

T

[C]{M} = {M}

T
where [C] is the transpose of the coupling matrix in equation (8).

(9)

Premultiplying equation (6) by [C] and substituting equations (8) and (9), one obtains
for the unknown constrained forces,

fr'K-J -[C][~][C]J{M} = [C][PJ]{P}. (10)

If the external excitations vanish, equation (10) gives the equations of free vibrations of the
entire coupled system, and the constrained forces may be different from zero only, if the
coefficient determinant vanishes, i.e.

(11)

If damping is present, the roots of equation (11) are, in general, complex. For very
light damping, the imaginary parts of these roots are approximately equal to the eigen­
frequencies of free vibrations of the same undamped system, and the displacements of the
entire system at these frequencies are approximately equal to the free vibration modes.

Premultiplying equation (10) with the inverse of its coefficient determinant, and then
T

with [C] one obtains

{M} = [T][PJ]{P} (12)

where

[T] = [[C] [f' K-J - [C][~][C] J- 1
[C]J (13)

is a 2k x 2k matrix which characterizes the mechanical properties of the entire coupled
system in terms of the mechanical properties of the component systems.

Expanded, the system matrix [T] becomes

t
AA tAB
11 11

t
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aa

t
BA

t
BB

11 11

[T] =
t
BA
ba

t
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11

t
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tNN
11
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where the partitioning is the same as in [~], equation (5). Once the elements of [T] have
been determined, they may be recorded for future use. All or part of[T] is used in subse­
quent computations depending on the information one intends to obtain.

RESPONSE TO DETERMINATE EXCITATIONS

The steady state response in the typical component system J at the typical point j is

Xf(w) = L(}jiw)Pt(w) + L *Bjk(w)Mt(w)
k k

(15)

where the (}jiw) are receptances between response points j and excitation points knot
involving coupling points. The *lJjk(w) are receptances involving one response point
indicated by a star and one coupling point indicated by a bar. In matrix terminology, the
response vector of component system J is then

(16)

The constrained force vector {MJ
} can be eliminated from equation (16) with the help

of the corresponding submatrix in {M} of equation (12). Expanding equation (12) and
using equation (14), one obtains

with similar equations for {MA
} ••• {MN

}. Substituting equation (17) in equation (16), the
steady state response at frequency w of the entire coupled system becomes

or

{X(w)} = [H(w)]{P(w)} (19)

where the typical elements of the typical submatrix [HJK
] of the receptance matrix [H] in

equation (19) are the receptances of the coupled system in terms of the receptances of the
component systems and are designated by Hff(w), giving the response at point j in com­
ponent system J due to a steady state excitation with frequency w at point k in component
system K.
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(20a)

The response of the coupled system in the time domain is obtained from the response
in the frequency domain, equation (19), by the use of the Fourier transform pair,

1 Jocx(t) = - X(W)eiro< dw
2n -oc

X(w) = L~ x(t)e- irot dt. (20b)

Applying equation (20a) to equation (19) and equation (20b) to {P(w)} with P(w) replacing
X(w) and p(t) replacing x(t), one obtains

(21)

where the interchangeability of the order of integration has been assumed. When the unit
impulse matrix is defined in terms of the receptance matrix by the Fourier transform
relation,

1 Joo .[h(t-r)] = 2n -00 [H(w)]e,ro(t-<)dw

the response equation in the time domain becomes

{x(t)} = f:oo [h(t-r)]{p(r)} dr

(22)

(23)

where the integrals in equations (22) and (23) are to be taken over every product term under
the integral sign. Equation (23) in the time domain is analogous to equation (19) in the
frequency domain. Similar to the submatrices [HJK ] with elements Hff in the frequency
domain, the unit impulse matrix, equation (22), is subdivided in submatrices [hJK(t-r)]
with unit impulse functions hff(t - r) as elements which give the response at point j in
component system J due to a unit impulse excitation at time (t - r) at point k in component
system K.

RESPONSE TO RANDOM EXCITATIONS

It is quite common for modern structural systems to be subjected to random rather
than determinate excitations. For instance, in certain geographical areas buildings are
excited by earthquake motions which are random in nature. Missile structures and space
stations may be under the influence of atmospheric turbulence, boundary layer turbulence,
thrust noise, docking excitations, internal operational noise, etc., all of which fall in the
category of random excitations.

In the following, relations are presented which govern the response of the coupled
system to random excitations when the receptances of the component systems are available
as functions of frequency w.

The cross-correlation functions of the stationary random responses of the coupled
system at pointj in component system J and at point k in component system K are defined
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(24)

by the following expression [10]

JK 1 JT I2
R "'(r) = lim T x1(t)xf(t+r)dt

jk T-+oo -T/2

where r is a time delay with respect to t and the response x(t) is assumed to be zero outside
the "long" time interval T.

JK

The cross-power spectral density S '" (w) of the response at pointj in component system
jk

J and at point k in component system K is defined to be the Fourier transform of tht; cross­
correlation function in equation (24). Hence, the following Fourier transform pair holds

JK 1 foo JK
R '" (r) = - S *(w)e iCOt dw

jk 2n _ 00 jk

JK foo lI(

S *(w) = R *(r)e- icot dr.
jk _ 00 jk

(25)

(26)

Substituting equation (24) in equation (26), one obtains with the help of equation (20b),

JK 1
S* (w) = lim T(X1;(w)xtT(w))

jk T-+ 00

(27)

where X1;(w) is the complex conjugate of XfT(W), and where for practical reasons the
subscript T indicates that in the time domain the response record is zero outside the time
interval T.

Equations analogous to the response equations (24), (25), (26) and (27) hold also for
the excitations and are given below by equations (28), (29), (30) and (31), respectively.

LM 1 fT/2
Rp(r)= lim T pt(t)p~(t+r)dt

1m T-+ 00 - T/2

LM 1 foo LM
. Rp (r) = - S p (w)eiCOt dw

1m 2n _ 00 1m

LM foo LM
S P (w) ,;" R P (r)e-iCOt dr

1m -00 1m

LM 1
S P (w) = lim T(Pt;(W)P~T(W)).

1m T-+oo

(28)

(29)

(30)

(31)

The response cross-correlation functions and the response cross-power spectral
densities may be determined in terms of the excitation cross-correlation functions and the
excitation cross-power spectral densities by substituting equation (23) in equation (24).
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(32)

(33)

Changing from matrix notation to index notation, one then obtains

JK 1 fT/2 {( lo foe" )
R * (r) = lim T L hfIA(i:)p~(t - i:) di: ...

]k T~C1O -Ti2 1=1 -00

x (... m~J:oo hf~f)p~(t+r-f)df)}dt.

Multiplying out, exchanging the order of integration and summation and observing equa­
tion (28) with a change of variable, the response cross-correlation functions become in
terms of the excitation cross-correlation functions

JK Ip m p N N foo foo LM
R

j
: (r) = 1~1 m~ 1 L~A M~A _ 00 _ 00 hfNi:)h::(f)RI~ (r + i: - f) di: df.

Changing in equation (29) the variable r to (r + i: - f) and substituting in equation (33)
gives

JK /p mp
N N 1 foo {fC1O foo LM ~

R* (r) = L L: L: L: - hfNi)eiwidi h::(f)e-iwrdfS p (w) eiw'dco.
jk 1= 1 m = 1 L =A M =A 21t _ 00 _ ex: - 00 1m

(34)

With the inverse of the Fourier transform relations for unit impulse functions, equation (24),
and the Fourier transform relations equations (25) and (26), equation (34) becomes

JK Ip mp N N LM
s* (co) = L: L L L: HfF"(co)H::(co)S p (co).

jk l = 1 m = 1 L = A M = A 1m

(35)

This equation gives the response cross-power spectral density between pointj in component
system J and point k in component system K. The right-hand terms are: the complex
conjugate of the receptance betWeen pointj in component system J and points I in compo­
nent systems L; the receptance between point k in component system K and points m in
component systems M; the excitation cross-power spectral density between points I in
component system L and points m in component systems M.

It is clear that the response auto-eorrelation function and the response power spectral
density at pointj in component system J ~s obtained from equation (33) and equation (35),
respectively by setting k = j and K = J in these equations.

CONCLUSIONS

A method is presented by which knowledge of the characteristic mechanical properties
of component systems allows the determination of the dynamic properties of the coupled
system. This method, which does not entail the calculation or measurement of the roots
of the characteristic equations and their associated modal shapes, is based on the use of
experimentally determined frequency response functions (receptances) of the component
systems. The method has thus the important merit in that it may be used when the dif­
ferential equations for certain components or for the entire system are unknown and
the starting data for the response calculations, transient or random. consist of the
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experimentally determined receptances of the component systems. The method is, of
course, not limited to the use of experimentally determined receptances, i.e. analytically
determined receptances as functions of frequency may be used as well. The method allows
diversified modifications and variations depending on the particular problem at hand.

The receptances ofthe entire coupled system are given by the elements ofthe coefficient
submatrices in equation (20) and are combinations of the receptances of the component
systems. These combinations are most easily executed by standard operations on digital
computers for frequency ranges of interest.

With the external excitations given in terms of their spectral densities, the spectral
densities of the responses are determined by simple matrix multiplication through the
frequency ranges of interest, equation (20).

The use ofreceptances lends itself naturally to the development of the random response
characteristics as expressed by cross-power spectral densities, equation (35), which are
necessary for the analysis of structures subjected to random loads.

The method presented here is strictly valid only for coupling of component systems at
discrete points. However, by a straightforward extension using Fourier series expansions,
coupling ofcomponent systems at continuously connected interfaces may be affected along
similar lines.
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Resume--Une methode est presentee pour I'analyse de systemes structuraux complexes pouvant etre subdivises
en n'importe quel nombre de systemes composants arbitrairement interrelies Ii des points discrets. En employant
des receptions determinees experimentalement ou analytiquement (fonctions de caracteristique de frequence)
caraeterlsant les proprietes mecaniques des systemes de composants, les receptions sont derivees, ce qui caracterise
les proprietes mecaniques du systeme couple entier. La neeessite de continuite du systeme aux points de couplage
donne naissance ades conditions d'equilibre et de compatibilite aux connections. Ces conditions sont modifiees,
permettant la presence d'unites de couplage elastiques et/ou dissipatives, ayant des masses negligeables entre
les points de couplage, ajoutant done une f1exibi1ite pratique considerable Ii la methode. En identifiant les contribu­
tions des composants des SYSIemes individuels, il est alors indique comment les receptions entrent dans les calculs
des responses pour Ie systeme entier qui est sujet Ii des excitations determinees ou hasardeuses.
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Zusammenfassung-Eine Methode wird beschrieben fUr die Analyse komplexer Struktursysteme, die in eine
Anzahl von Bestandteilsystemen aufgeteilt werden konnen, die willkiihrlich in bestimmten Punkten miteinander
verbunden werden. Durch Verwendllng experimentell oder analytisch ermittelter "Rezeptanzen" (Fllnktionen
des Freqllenzganges) die die mechanischen Eigenschaften des Bestandteilsystemes darstellen, werden Rezeptanzen
ermittelt, die die mechanischen Eigenschaften des gekoppelten Gesamtsystems darstellen. Die Notwendigkeit
der Systems-Kontinuitat an den Kopplungsstellen gibt Anlass zu Gleichgewichtsbedingungen sowie zur Kom­
patibilitat an den Verbindungsstellen. Diese Bedingungen sind abgeandert rind gestatten die Anwesenheit elas­
tischer sowie(oder zerstreuender Kopplungseinheiten mit sehr geringen Massen zwischen den Verbindungs­
punkten, dadurch erhalt die Methode praktische Flexibilitat in bedeutendem Mass. Indem man die Beitrage der
einzelnen Bestandteilsysteme separat erkennbar halt wird dann gezeigt, dass und wie die Rezeptanzen in die
Gesarntyssterns-Berechnungen eintreten, wenn dies bestirnrnten oder willkiihrlichen Erregungen unterworfen
wird.

AficTpaKT-llpeJJ;JlaraeTCli MeTOJJ; JJ;JllI aHaJIH3a CJlOlKHblX CTpyKTypHblX CIfCTeM, KOTopble MoryT 6bITb

nOJJ;pa3JJ;eJIeHbl Ha mo6oe 'IHCJlO KOMnOHeHTHblX CHCTeM, IIPOH3BOJlbHO cOllplilKeHHblx B JJ;HCKpeTHbIX

nyHKTax. llpHMeHlIli 3KcnepHMeHTaJlbHO HJlH aHaJlHTH'IecKH onpeJJ;eJIeHHble npHeMbI (clJyHKU:HH 'IaCTOTHbIX

xapaKTepHcTHK)-xapaKTepH3YIOII.\He MeXaHH'IeCKHe CBoj!,cTBa KOMIlOHeHTHblX CHCTeM, BblBOJJ;lITClillpHeMbl,

KOTopble xapaKTepH3ylOT MeXaHH'IeCKHe CBoj!,cTBa BCej!, cnapeHHoj!, CHCTeMbI. Tpe60BaHHe HenpepblBHOCTH

CHCTeMbI y coeJJ;y.HHTeJIbHbIX IIYHKTOB IIOBblIllalOT yCJIOBHlI paBHoBeCHli H COBMecTHMOCTH B MecTax coeJJ;H­

HeHHl!. 3TH yCJIOBHlI H3MeHlIIOTCJI, JJ;aBaJI B03MOlKHOc;Tb IIpHCyTCTBHlI 3J1aCTH'IeCKH H/HJIH JJ;HCCHnaTH'IecKH

CllapeHHblx e,!{HHHU: C He3Ha'lHTeJIbHbIMH MaccaMH MelKJJ;y lIyHKTaMH CnapHBaHHlI, TaKHM 06pa30M IIpHJJ;aBali

MeTOJJ;y 3Ha'lHTeJIbHYIO npaKTH'IecKylO rH6KOCTb. llpHJJ;eplKHBaliCb OTOlKJJ;ecTBJleHHlI COJJ;ej!,CTBHlI HHJJ;HBH­

JJ;YaJIbHbiX KOMIIOHeHTHblX cHCTeM, yKa3blBaeTClI, KaK IIpHeMbI BXO.D.lIT B 'IaCTOTHble BbI'IHCJIeHHlI .uJIli Bcel!

CHCTeMbl, KOTopali nOJJ;'1HHlIeTCli onpeJJ;eJIeHHbIM HJIH CJIy'laii:HbIM B036YlK.D.eHHlIM.


